Binding Modes in Peptides

DOI: 10.1002/anie.201410389

Multi-Frequency, Multi-Technique Pulsed EPR Investigation of the Copper Binding Site of Murine Amyloid β Peptide**

Donghun Kim, Jeong Kyu Bang, and Sun Hee Kim*

Abstract: Copper-amyloid peptides are proposed to be the cause of Alzheimer's disease, presumably by oxidative stress. However, mice do not produce amyloid plaques and thus do not suffer from Alzheimer's disease. Although much effort has been focused on the structural characterization of the copperhuman amyloid peptides, little is known regarding the copperbinding mode in murine amyloid peptides. Thus, we investigated the structure of copper-murine amyloid peptides through multi-frequency, multi-technique pulsed EPR spectroscopy in conjunction with specific isotope labeling. Based on our pulsed EPR results, we found that Ala2, Glu3, His6, and His14 are directly coordinated with the copper ion in murine amyloid β peptides at pH 8.5. This is the first detailed structural characterization of the copper-binding mode in murine amyloid β peptides. This work may advance the knowledge required for developing inhibitors of Alzheimer's

Alzheimer's disease (AD) is a well-known neurodegenerative disease that has received considerable attention as the population of patients suffering from this disease grows rapidly. The most common pathological feature of AD is the extracellular deposits of amyloid β peptide (Aβ) plaques, and interestingly, the concentration of metal ions such as copper in the plaques is high. This finding leads to the hypothesis of metal-induced amyloid fibrilization by oxidative stress owing to the reaction between redox-active metal ions and oxygen. Because a detailed knowledge of the coordination environment of copper is required to understand the molecular mechanism of the amyloid fibrilization event, extensive efforts have been focused on elucidating the coordination of copper ions in human amyloid β peptides (hAβ). [4,5]

Murine amyloid β peptides (mA β), however, differ from hA β in three amino acids: R5G, Y10F, and H13R. It has been

[*] D. Kim, Dr. S. H. Kim

Western Seoul Center, Korea Basic Science Institute

Seoul 120-140 (Korea) E-mail: shkim7@kbsi.re.kr

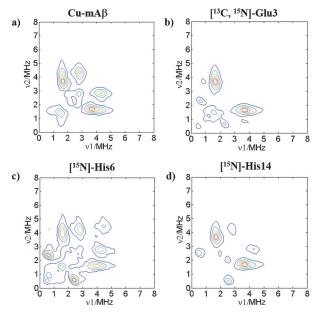
Dr. J. K. Bang

Division of Magnetic Resonance Korea Basic Science Institute,

Chungbuk 363-883 (Korea)

[**] This work was supported by KBSI grant (T34435) to S.H.K. We gratefully appreciate Prof. Brian M. Hoffman and Dr. Peter Doan at Northwestern University for providing the ENDOR simulation code and Dr. Kyung-Bin Cho at Ewha Womans University for his help with DET calculations

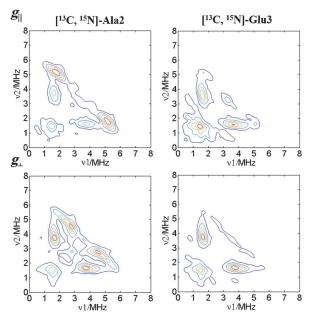
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201410389.


shown that these three different amino acid residues make mA β soluble, without peptide fibrilization, and thus, A β deposition is not encountered in rats. [6] Furthermore, copper has long been known to ligate to the mA β , and the coordination of Cu^{II} in mA β has been proposed to be different from that in hA β . [7,8] However, the detailed structure of Cu^{II}-mA β has not been thoroughly studied. [8,9] To better understand the AD mechanism, investigations involving mouse animal models are essential. Therefore, it is of particular importance to elucidate the structure of the copper-coordinated murine amyloid peptide (Cu-mA β), which may provide insight into the aggregation mechanism of amyloid peptides.

In this work, we employed multi-frequency, multi-technique pulsed electron paramagnetic resonance (EPR) spectroscopy to explore the details of the copper coordination of mAβ. A combination of 9 GHz hyperfine sublevel correlation (HYSCORE) and 34 GHz electron nuclear double resonance (ENDOR) spectroscopy along with specific isotope labeling is immensely useful for identifying the coordination environment of the copper binding site in mAβ. A set of specifically isotope-labeled mAβ peptides consisting of uniformly ¹³C-and ¹⁵N-labeled Ala2, ¹³C-and ¹⁵N-labeled Glu3, ¹⁵N-labeled His6, and ¹⁵N-labeled His14 was used.

The CW-EPR of Cu-mA β at pH 7.4 exhibits two distinct sets of hyperfine peaks of the copper ion. This EPR spectrum can be effectively reproduced in simulations involving two different copper species (Supporting Information, Figure S1). As the pH was raised to 8.5, the CW-EPR of Cu-mA β showed only one species, which is comparable to the results observed for Cu-mA β .^[9] The spectrum at pH 8.5 can be well simulated using g = [2.23, 2.06, 2.06] and A = [154, 14, 14] G (Supporting Information, Figure S1). Thus, owing to the complexity of the interpretation, we will exclusively focus on examining the coordination environment of the Cu-mA β at pH 8.5. Furthermore, no effect of isotope labeling on the EPR spectra was observed (Supporting Information, Figure S2). Thus, high-resolution pulsed EPR techniques were used to detect hyperfine interactions not observed in the CW-EPR.

To probe the detailed coordination environment of the copper site in mA β , 9 GHz HYSCORE experiments were conducted. A two-dimensional HYSCORE spectrum consists of cross-peaks that represent correlations between the nuclear frequencies of one electron spin manifold and the nuclear frequencies of the other electron spin manifold, simplifying the analysis of spectra. Figure 1a displays the HYSCORE spectrum of natural-abundance Cu-mA β , which shows the cross-peaks near (4.0, 1.6) and (1.6, 4.0) MHz. These peaks have been assigned as the double-quantum of the amino nitrogen nucleus of histidine (His) directly bound to


Figure 1. HYSCORE spectra of a) Cu^{II}-mAβ(1–16), b) ¹³C, ¹⁵N-Glu3-Cu^{II}-mAβ(1–16), c) ¹⁵N-His6-Cu^{II}-mAβ(1–16), and d) ¹⁵N-His14-Cu^{II}-mAβ(1–16). Experimental conditions: microwave frequency 9.7 GHz, magnetic field 3360 G, T=12 K, π pulse width 32 ns, $\pi/2$ pulse width 16 ns, $\tau=210$ ns (except in (a): $\tau=140$ ns).

Cu^{II}.[11,12] This assignment can be verified using isotope-labeled histidines.

When the HYSCORE experiments were performed on 15 N-labeled His6 peptides, along with the features present in the unlabeled peptide, new cross-peaks at about (2.4, 0.6) and (0.6, 2.4) MHz centered at the Larmor frequency of 15 N ($\nu_{15N} = 1.45$ MHz) and split by 1.8 MHz appeared (Figure 1 c). These cross-peaks arise from the correlation between the 15 N transitions in different electron spin manifolds. These weakly coupled nitrogen atoms are characteristic of the amino nitrogen of a histidine directly bound to the copper ion. Furthermore, the HYSCORE spectra taken with 15 N-labeled His14 peptides are similar to the spectra of 15 N-labeled His6, which indicates that the hyperfine parameters are nearly identical. Thus, HYSCORE experiments in conjunction with the 15 N isotope labeling of histidines indicate that both His6 and His14 bind directly to the copper ion (Figure 1c,d).

The HYSCORE spectrum of natural-abundance CuIImA β shows another set of cross-peaks at (4.4, 2.9) and (2.9, 4.4) MHz (Figure 1a). To identify these cross-peaks, additional HYSCORE experiments were conducted on the ¹⁵Nlabeled Glu3 of mAβ. In the HYSCORE of the ¹⁵N-labeled Glu3 sample, these cross-peaks disappear, which is unambiguously confirmed by the appearance of the ¹⁵N signal in the HYSCORE (Figure 1b). The cross-peaks near (2.3, 0.7), (0.7, 2.3) MHz centered at the ^{15}N Larmor frequency (ν_{15N} = 1.45 MHz) with a splitting of approximately 1.6 MHz are clearly shown in the HYSCORE of 15N-labeled Glu3 of CuIImAβ. Thus, the HYSCORE experiments show that the crosspeaks at (4.4, 2.9) and (2.9, 4.4) MHz in Cu-mAß arise from the ¹⁴N of Glu3. Furthermore, the shape and the position of this feature are strikingly comparable to observations for the double-quantum transitions of an amide nitrogen atom of a non-coordinating peptide backbone when the adjacent carbonyl function is coordinated with the Cu^{II} ion in the equatorial position.^[5,11,14] This assignment can be further verified by the pulsed EPR data taken on the ¹³C-labeled Ala2 samples (see below).

The HYSCORE experiments on the 13 C-labeled Ala2 of Cu^{II}-mA β exhibit strong 13 C ridges centered on the 13 C Larmor frequency (ν_{13C} = 3.6 MHz). At g_{\perp} , the 13 C ridges of Ala2 exhibit a splitting of approximately 2.4 MHz and a width of approximately 0.9 MHz with a larger splitting of approximately 3.4 MHz in the g_{\parallel} region (Figure 2).

Figure 2. HYSCORE spectra of 13 C, 15 N-Ala2 Cu II -mAβ(1–16) (left), and 13 C, 15 N-Glu3-Cu II -mAβ(1–16) (right) at g_{\parallel} (top) and g_{\perp} (bottom). Experimental conditions: microwave frequency 9.7 GHz, T=12 K, π pulse width 32 ns, $\pi/2$ pulse width 16 ns, $\tau=140$ ns.

This 13 C signal was confirmed by Mims ENDOR. Figure 3 shows the 13 C Mims ENDOR of globally labeled 13 C of Ala2 Cu-mA β taken across the EPR envelope. The ENDOR features are centered on the 13 C Larmor frequency and split by the magnitude of hyperfine interactions. The 13 C ENDOR shows doublets centered at the Larmor frequency of 13 C and separated by 4.4 MHz around g_{\parallel} , decreasing to 2.4 MHz as the field changes to g_{\perp} . The τ value of 150 ns was chosen to prevent the suppression effect of Mims holes at $A = n/\tau$ (n = 0,1,2,...). $^{[15]}$ By collecting the 13 C Mims ENDOR throughout the EPR envelop of Cu-mA β , we were able to extract the 13 C hyperfine tensor parameters to more accurately map the location of the 13 C nucleus of Ala2.

The 2D field-frequency ENDOR signals are well simulated by A = [1.8, 3.0, 4.6] MHz and Euler angles $[\beta, \alpha] = [80, 10]^{\circ}$. The magnitude of the hyperfine coupling (A_{iso}) of 13 C approximately 3 MHz can be explained by a through-bond pathway resulting from the equatorial coordination of the carbonyl oxygen of Ala2 with a Cu^{II} ion. $^{[16]}$ Additionally, the Cu^{II} $_{-}^{13}$ C vector in the g frame with the Euler angles obtained from the simulations indicates that the 13 C nucleus is located

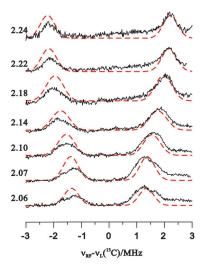


Figure 3. 2D field/frequency ¹³C Mims ENDOR spectra of globally labeled 13 C, 15 N-Ala2 Cu II -mA β (1–16). Experimental conditions: microwave frequency 33.8 GHz, T=12 K, Mims ENDOR $\pi/2$ width 32 ns, τ = 150 ns, RF pulse width 20 μ s. Simulations are shown with red dashed lines: simulation parameters: g = [2.23, 2.06, 2.06], A = [1.8,3.0, 4.6] MHz, Euler angles = $[\beta, \alpha]$ = [80, 10]°.

near the equatorial position. Thus, the 13C-labeled Ala2 HYSCORE and the Mims ENDOR spectroscopy together with the ¹⁵N HYSCORE of Glu3 demonstrate that the carbonyl of Ala2 is an equatorial ligand of the copper ion.

Another ¹³C ENDOR signal with very weak hyperfine coupling of approximately 0.5 MHz was detected when using different τ values to maximize the sensitivity of the smaller hyperfine couplings because the ENDOR response R depends on the hyperfine coupling A and the time τ between the first two $\pi/2$ pulses according to the equation $R \approx$ $[1-\cos(2\pi A\tau)]$ (Supporting Information, Figure S3). [15] This smaller ENDOR signal may arise from the distant ¹³C nucleus from the globally labeled ¹³C of Ala2.

Interestingly, when a different τ value of 140 ns was used for the HYSCORE of the ¹³C, ¹⁵N-labeled Glu3 of Cu-mAβ peptides, new ridges centered on the ¹³C Larmor frequency $(\nu_{13C} \approx 3.6 \text{ MHz})$ appeared, as shown in Figure 2. No features of the ¹³C from Glu3 were detected in hA\(\beta\). The contour plot obtained near g_{\parallel} displays more distinct ¹³C cross-peaks at (5.1, 1.5), (1.5, 5.1) MHz with a splitting of approximately 3.6 MHz and another weakly coupled ¹³C signal near the ¹³C Larmor frequency. At g_{\perp} , there are two distinct ¹³C signals: one is split by approximately 2 MHz with a width of approximately 0.5 MHz and the other is near the ¹³C Larmor frequency with a ridge of approximately 1 MHz. Moreover, the ¹³C signals of Glu3 are confirmed by the Mims ENDOR. The ¹³C Mims ENDOR using different τ values is shown in the Supporting Information, Figure S4. The spectra were obtained near g_{\perp} , where the EPR intensity is maximized. To verify more or less broad and featureless ENDOR signals, different τ values were used. Using different τ values, the Mims holes due to the suppression effect (see below) appeared in the approximately 3 MHz ENDOR signal. This effect on the spectrum clearly indicates a strongly coupled ¹³C hyperfine coupling of approximately 3 MHz.

Two more weakly coupled ¹³C signals split by less than 1 MHz were also detected, with τ values of 300 ns and 500 ns (Supporting Information, Figure S4), which may arise from an axially coordinated or non-coordinated carboxylate ¹³C of the side chains of Glu3 (see below). Although the ENDOR intensity is not strong enough to be detected throughout the EPR envelope, the magnitude of the hyperfine coupling (approximately 3 MHz) of the ¹³C implies that the carbonyl or carboxyl of Glu3 is directly ligated to the copper ion, [16] suggesting two possible binding modes of Glu3 to the copper ion. One possibility is that this signal can be attributed to the ¹³C of the carboxyl of an equatorially coordinated carboxylate directly coordinated with the copper site. The other is that the ¹³C signal arises from the spin density on the ¹³C carbon owing to the oxygen coordination of its backbone carbonyl (Supporting Information, Figure S5).

To distinguish between these two possible models, DFT calculation was performed. The DFT calculation demonstrates that the model with the oxygen coordination from the carboxyl side-chain of Glu3 is more stable than the model with coordination from the carbonyl backbone. The DFToptimized structure of $\text{Cu-m} A\beta$ based on the results of this work is shown in Figure 4. Both His6 and His14 are

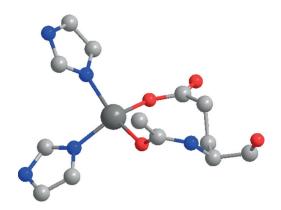


Figure 4. DFT-optimized structure of Cu^{II} binding site in mA β based on our spectroscopic data. Ala2, Glu3, His6, and His14 are coordinated to the Cu^{II}. Cu dark gray, C gray, N blue, O red.

coordinated with the copper site, and both the oxygen of the carbonyl of Ala2 and the oxygen of the carboxyl of the side-chain in Glu3 are ligands of the copper ion.

The coordination structure of the Cu-mAβ obtained from the spectroscopic and DFT calculations is similar to the proposed structure of the Cu-hAß at high pH in that His6, His14, and Ala2 are coordinated with the copper ion. [4d] However, the coordination of Glu3 has not been observed in Cu-hAβ, which makes the binding mode of the Cu^{II} in rat Aβ unique. Although detailed mechanistic studies are required, the difference between humans and rats in the development of AD may lie in the nature of the CuII coordination by Glu3, which thus may have a key role in preventing amyloid fibrilization.

In summary, we have presented the detailed coordination environment of the copper-binding site in mAβ. By using multi-frequency, multi-technique pulsed EPR spectroscopy in

1563

conjunction with specific isotope labeling, we were able to directly detect and thus identify the ligands of the copper ion coordinated with murine amyloid peptides. This first detailed structural description of the copper-binding site in mA β may help elucidate the molecular mechanism underlying amyloid fibrilization, providing structural insight into the development of inhibitors of Alzheimer's disease.

Received: October 23, 2014

Published online: December 10, 2014

Keywords: Alzheimer's disease · ENDOR · EPR spectroscopy · HYSCORE · murine amyloid peptides

- a) R. Jakob-Roetne, H. Jacobsen, Angew. Chem. Int. Ed. 2009, 48, 3030-3059; Angew. Chem. 2009, 121, 3074-3105; b) L. E. Scott, C. Orvig, Chem. Rev. 2009, 109, 4885-4910; c) E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Chem. Rev. 2006, 106, 1995-2044.
- [2] D. J. Selkoe, Physiol. Rev. 2001, 81, 741 766.
- [3] a) A. I. Bush, Alzheimer Dis. Assoc. Disord. 2003, 17, 147-150;
 b) A. Rauk, Chem. Soc. Rev. 2009, 38, 2698-2715;
 c) C. Hureau,
 P. Faller, Biochimie 2009, 91, 1212-1217;
 d) A. I. Bush, Trends Neurosci. 2003, 26, 207-214.
- [4] a) S. C. Drew, K. J. Barnham, Acc. Chem. Res. 2011, 44, 1146–1155; b) B. K. Shin, S. Saxena, Biochemistry 2008, 47, 9117–9123; c) B. K. Shin, S. Saxena, J. Phys. Chem. A 2011, 115, 9590–9602; d) S. C. Drew, C. J. Noble, C. L. Masters, G. R. Hanson, K. J. Barnham, J. Am. Chem. Soc. 2009, 131, 8760–8761; e) J. W. Karr, L. J. Kaupp, V. A. Szalai, J. Am. Chem. Soc. 2004, 126, 13534–13538; f) J. W. Karr, V. A. Szalai, J. Am. Chem. Soc. 2007, 129, 3796–3797; g) P. Dorlet, S. Gambarelli, P. Faller, C. Hureau, Angew. Chem. Int. Ed. 2009, 48, 9273–9276; Angew. Chem. 2009, 121, 9437–9440; h) C. Hureau, Y. Coppel, P. Dorlet,

- P. L. Solari, S. Sayen, E. Guillon, L. Sabater, P. Faller, *Angew. Chem. Int. Ed.* **2009**, *48*, 9522–9525; *Angew. Chem.* **2009**, *121*, 9686–9689; i) D. Kim, N. H. Kim, S. H. Kim, *Angew. Chem. Int. Ed.* **2013**, *52*, 1139–1142; *Angew. Chem.* **2013**, *125*, 1177–1180.
- [5] S. C. Drew, C. J. Noble, C. L. Masters, G. R. Hanson, K. J. Barnham, J. Am. Chem. Soc. 2009, 131, 1195–1207.
- [6] a) C. Duyckaerts, M.-C. Potier, B. Delatour, Acta Neuropathol. 2008, 115, 5-38; b) O. Philipson, A. Lord, A. Gumucio, P. O'Callaghan, P. Lannfelt, L. N. Nilsson, FEBS J. 2010, 277, 1389-1409
- [7] T. Kowalik-Jankowska, M. Ruta, K. Wis'niewska, L. Łankiewicz, J. Inorg. Biochem. 2003, 95, 270 – 282.
- [8] E. Gaggelli, Z. Grzonka, H. Kozlowski, C. Migliorini, E. Molteni, D. Valensin, G. Velanlsin, *Chem. Commun.* 2008, 341–343.
- [9] H. Eury, C. Bijani, P. Faller, C. Hureau, Angew. Chem. Int. Ed. 2011, 50, 901 – 905; Angew. Chem. 2011, 123, 931 – 935.
- [10] P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 1986, 132, 279 – 282.
- [11] C. S. Burns, E. Aronoff-Spencer, C. M. Dunham, P. Lario, N. I. Avedievich, W. E. Antholine, M. M. Olmstead, A. Vrielink, G. J. Gerfen, J. Peisach, W. G. Scott, G. L. Millhauser, *Biochemistry* 2002. 41, 3991 – 4001.
- [12] F. Jiang, J. McCracken, J. Peisach, J. Am. Chem. Soc. 1990, 112, 9035 – 9044.
- [13] A. Lai, H. L. Flanagan, D. J. Singel, J. Chem. Phys. 1988, 89, 7161-7166.
- [14] Y. Deligiannakis, M. Louloudi, N. Hadjiliadis, *Coord. Chem. Rev.* **2000**, *204*, 1–112.
- [15] A. Schweiger, G. Jeschke, Principles of Pulsed Electron Paramagnetic Resonance, Oxford University Press, Oxford, 2001.
- [16] a) P. M. Schosseler, B. Wehrli, A. Schweiger, *Inorg. Chem.* 1997, 36, 4490–4499; b) D. Baute, D. Arieli, F. Neese, H. Zimmermann, B. M. Weckhuysen, D. Goldfarb, *J. Am. Chem. Soc.* 2004, 126, 11733–11745.